%I #4 Dec 06 2013 13:55:37
%S 48,6046,1409129,338046654,81477098771,19645569858350,
%T 4737126288340919,1142266120892160404,275435466571576824843,
%U 66415959358015599726176,16014929880282766959784607,3861692004518641314432355642
%N Number of 4Xn 0..5 arrays with no element x(i,j) adjacent to value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order
%C Row 4 of A233239
%H R. H. Hardin, <a href="/A233242/b233242.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 261*a(n-1) -3894*a(n-2) -228438*a(n-3) +2689194*a(n-4) +57510040*a(n-5) -258059784*a(n-6) -1989997012*a(n-7) +8744106144*a(n-8) +8456810274*a(n-9) -90329150058*a(n-10) +156901744724*a(n-11) -57108648251*a(n-12) -126001313693*a(n-13) +153480763210*a(n-14) -36878799916*a(n-15) -35471311024*a(n-16) +25150473568*a(n-17) -4487086464*a(n-18) -393804288*a(n-19) +117669888*a(n-20) +6635520*a(n-21) for n>22
%e Some solutions for n=2
%e ..0..1....0..1....0..1....0..1....0..1....0..0....0..1....0..1....0..1....0..1
%e ..2..2....2..2....2..2....1..2....2..1....1..2....5..4....2..0....2..0....2..4
%e ..1..2....4..4....0..1....2..1....0..1....5..5....2..4....0..4....4..5....2..4
%e ..1..2....2..2....3..4....1..2....5..3....5..5....4..0....0..4....3..5....2..5
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 06 2013