login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Prime(k), where k is such that (Sum_{j=1..k} prime(j)^11) / k is an integer.
0

%I #39 Dec 21 2024 00:13:16

%S 2,97,277,23311,61583,6133811,210952097,359643241,5451597181,

%T 42641466149,51575229001,199655689679,248181386429,61646670874849,

%U 82153230089767,212374157550341,11432141933990629,15031011453909223

%N Prime(k), where k is such that (Sum_{j=1..k} prime(j)^11) / k is an integer.

%C a(17) > 257180056649941. - _Bruce Garner_, Mar 29 2021

%H OEIS Wiki, <a href="https://oeis.org/wiki/Sums_of_primes_divisibility_sequences">Sums of powers of primes divisibility sequences</a>

%F a(n) = prime(A125827(n)).

%e a(2) = 97, because 97 is the 25th prime and the sum of the first 25 primes^11 = 12718098700540100969050 when divided by 25 equals 508723948021604038762 which is an integer.

%t t = {}; sm = 0; Do[sm = sm + Prime[n]^11; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)

%o (PARI) is(n)=if(!isprime(n),return(0)); my(t=primepi(n),s); forprime(p=2,n,s+=Mod(p,t)^11); s==0 \\ _Charles R Greathouse IV_, Nov 30 2013

%o (PARI) S=n=0;forprime(p=1,,(S+=p^11)%n++||print1(p",")) \\ _M. F. Hasler_, Dec 01 2013

%Y Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.

%Y Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248.

%Y Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601.

%K nonn,more,changed

%O 1,1

%A _Robert Price_, Dec 05 2013

%E a(14) from _Paul W. Dyson_, Jan 08 2021

%E a(15) from _Bruce Garner_, Mar 08 2021

%E a(16) from _Bruce Garner_, Mar 29 2021

%E a(17) from _Paul W. Dyson_, Jan 03 2023

%E a(18) from _Paul W. Dyson_, Dec 20 2024