%I #10 Sep 08 2024 08:11:10
%S 6896,1495040,4653056000,8403942375424,20170789919653888,
%T 42129429039341895680,95229762257179140685824,
%U 206324876650202359620698112,458191976247070056511019417600
%N Number of 7Xn 0..5 arrays with no element x(i,j) adjacent to itself or value 5-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 3 and 4, and 2 appearing before 3 in row major order (unlabeled 6-colorings with no clashing color pairs).
%H R. H. Hardin, <a href="/A233180/b233180.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A233180/a233180.txt">Huge empirical recurrence of order 47</a>
%F Empirical recurrence of order 47 (see link above).
%e Some solutions for n=2
%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e ..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e ..0..2....2..1....5..2....2..1....0..2....0..2....2..1....0..4....0..4....2..1
%e ..5..3....5..4....0..4....3..0....5..3....0..2....3..5....2..1....2..1....5..1
%e ..1..3....2..1....2..4....3..4....5..1....5..1....3..4....3..5....3..4....2..1
%e ..0..3....2..0....3..5....2..4....2..4....0..2....3..1....1..5....2..1....3..0
%e ..0..2....2..4....1..0....0..1....0..1....5..3....5..4....4..5....3..5....4..5
%Y Row 7 of A233174.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 05 2013