Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Dec 04 2013 06:43:14
%S 1,2,3,5,11,10,14,65,74,36,41,386,941,515,136,122,2315,11486,13721,
%T 3602,528,365,13886,141566,342626,200165,25211,2080,1094,83315,
%U 1742447,8714705,10221326,2920145,176474,8256,3281,499886,21452183,221113913
%N T(n,k)=Number of nXk 0..3 arrays with no element x(i,j) adjacent to value 3-x(i,j) horizontally, diagonally or antidiagonally, top left element zero, and 1 appearing before 2 in row major order
%C Table starts
%C ......1........2............5..............14.................41
%C ......3.......11...........65.............386...............2315
%C .....10.......74..........941...........11486.............141566
%C .....36......515........13721..........342626............8714705
%C ....136.....3602.......200165........10221326..........537122150
%C ....528....25211......2920145.......304926626........33113065637
%C ...2080...176474.....42601181......9096692126......2041493495546
%C ...8256..1235315....621496841....271376130626....125863931140721
%C ..32896..8647202...9066845525...8095800458126...7759890074654654
%C .131328.60530411.132273701825.241517133090626.478420800866866973
%H R. H. Hardin, <a href="/A233098/b233098.txt">Table of n, a(n) for n = 1..199</a>
%F Empirical for column k:
%F k=1: a(n) = 6*a(n-1) -8*a(n-2)
%F k=2: a(n) = 8*a(n-1) -7*a(n-2)
%F k=3: a(n) = 16*a(n-1) -21*a(n-2) +6*a(n-3)
%F k=4: a(n) = 31*a(n-1) -35*a(n-2) +5*a(n-3)
%F k=5: [order 11]
%F k=6: [order 22]
%F Empirical for row n:
%F n=1: a(n) = 4*a(n-1) -3*a(n-2)
%F n=2: a(n) = 6*a(n-1) +a(n-2) -6*a(n-3) for n>4
%F n=3: a(n) = 13*a(n-1) -5*a(n-2) -47*a(n-3) +52*a(n-4) -12*a(n-5) for n>6
%F n=4: [order 11] for n>12
%F n=5: [order 27] for n>28
%F n=6: [order 87] for n>88
%e Some solutions for n=3 k=4
%e ..0..1..0..1....0..1..1..0....0..1..1..0....0..1..3..3....0..1..1..0
%e ..0..2..0..2....1..0..1..0....3..1..0..1....1..1..3..2....0..0..1..1
%e ..3..1..0..1....0..0..0..0....0..1..1..1....3..1..0..2....0..1..1..0
%Y Column 1 is A007582(n-1)
%Y Column 2 is A199417(n-1)
%Y Row 1 is A007051(n-1)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Dec 04 2013