login
p mod 24, where p is such that 2^p - 1 is prime (see Mersenne primes, A000043).
1

%I #46 Oct 15 2024 04:32:17

%S 2,3,5,7,13,17,19,7,13,17,11,7,17,7,7,19,1,1,5,7,17,5,5,17,5,1,1,11,7,

%T 1,19,23,17,19,5,5,17,17,13,19,7,23,1,17,11,1,17,17

%N p mod 24, where p is such that 2^p - 1 is prime (see Mersenne primes, A000043).

%H Chris K. Caldwell, <a href="http://www.utm.edu/research/primes/mersenne/index.html">Mersenne Primes</a>.

%H Chris K. Caldwell, <a href="http://www.utm.edu/research/primes/largest.html#largest">Recent Mersenne primes</a>.

%H Walter Wegscheider, <a href="http://www.austromath.at/mersenne/mersenne-primzahlen.html">Liste der Mersenne-Primzahlen</a>, Pädagogische Hochschule für Niederösterreich (in German).

%F a(n) = A000043(n) mod 24.

%t Mod[#, 24] &@ MersennePrimeExponent@ Range@ 45 (* _Michael De Vlieger_, Jul 22 2018 *)

%Y Cf. A000043, A000668, A124477, A126043-A126059, A233009.

%K nonn,more

%O 1,1

%A _Freimut Marschner_, Dec 03 2013

%E a(46)-a(47) corrected and a(48) removed by _Gord Palameta_, Jul 21 2018

%E a(48) from _Amiram Eldar_, Oct 15 2024