%I
%S 52,11900,4416,1110752,399122,105188684,38988416,9962578834,
%T 3778921534,943473527702,366611360006,89351184548884,35541201208134,
%U 8461935007869746,3443798169301412,801382290095806940,333518031672301528
%N Number of (6+1)X(n+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally, diagonally or antidiagonally, with no adjacent elements equal
%C Row 6 of A232515
%H R. H. Hardin, <a href="/A232521/b232521.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A232521/a232521.txt">Empirical recurrence of order 90</a>
%F Empirical recurrence of order 90 (see link above)
%e Some solutions for n=3
%e ..1..0..1..2....0..1..2..1....1..2..1..2....0..1..2..1....1..0..1..0
%e ..1..2..1..2....2..1..0..1....1..0..1..0....2..1..0..1....1..2..1..2
%e ..1..2..1..0....2..1..2..1....1..2..1..0....2..1..0..1....1..2..1..0
%e ..1..0..1..0....0..1..0..1....1..2..1..2....2..1..2..1....1..0..1..2
%e ..1..2..1..2....2..1..2..1....1..0..1..0....2..1..2..1....1..0..1..2
%e ..1..0..1..0....0..1..0..1....1..0..1..2....0..1..0..1....1..2..1..0
%e ..1..2..1..0....2..1..2..1....1..2..1..0....2..1..2..1....1..0..1..2
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 25 2013
