login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers k such that distances from k to three nearest squares are three triangular numbers.
2

%I #19 Mar 17 2014 20:17:15

%S 1,10,15,19,26,197,253,325,631,1090,1522,2395,3601,4434,4625,6571,

%T 9026,11026,11116,14631,15454,19045,22501,35722,38431,41210,53036,

%U 61505,65521,66239,69697,69949,70291,85384,99226,110890,152101,152803,160021,168101,181801,189631

%N Numbers k such that distances from k to three nearest squares are three triangular numbers.

%H Reinhard Zumkeller, <a href="/A232501/b232501.txt">Table of n, a(n) for n = 1..250</a>

%o (Haskell)

%o import Data.List (sort)

%o a232501 n = a232501_list !! (n-1)

%o a232501_list = filter f [1..] where

%o f x = all ((== 1) . a010054) $ init $ sort $

%o map (abs . (x -) . (^ 2) . (+ (a000196 x))) [-1..2]

%o -- _Reinhard Zumkeller_, Mar 16 2014

%Y Cf. A000217, A000290, A234335.

%Y Cf. A232608 (terms that are triangular numbers).

%Y Cf. A000196, A010054, A048760, A048761.

%K nonn

%O 1,2

%A _Alex Ratushnyak_, Feb 23 2014