login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A232492 Number of symmetry classes of 3-eared triangulations of an n-gon. 0
0, 1, 1, 5, 14, 42, 112, 304, 768, 1928, 4696, 11280, 26624, 62160, 143360, 327744, 742752, 1671296, 3735552, 8301504, 18350080, 40370688, 88429952, 192939008, 419430400, 908768000, 1962934272, 4227862528, 9082066432, 19461578752, 41607495680, 88762674176, 188978561024, 401579474944 (list; graph; refs; listen; history; text; internal format)
OFFSET

5,4

LINKS

Table of n, a(n) for n=5..38.

A. Regev, Remarks on two-eared triangulations, arXiv preprint arXiv:1309.0743 [math.CO], 2013-2014.

Index entries for linear recurrences with constant coefficients, signature (6,-10,-2,12,4,8,-48,32).

FORMULA

See Maple code.

G.f.: -x^6*(1-5*x+9*x^2-4*x^3-2*x^4+8*x^6-6*x^5) / ( (2*x^2-1)*(2*x^3-1)*(2*x-1)^3 ). - R. J. Mathar, Dec 04 2013

MAPLE

f:=proc(n) local t1;

t1:=2^(n-8)*(n-4)*(n-5)/3;

if (n mod 2) = 0 then t1:=t1+2^(n/2-4); fi;

if (n mod 3) = 0 then t1:=t1+2^(n/3-2)/3; fi;

t1; end; [seq(f(n), n=5..50)];

MATHEMATICA

LinearRecurrence[{6, -10, -2, 12, 4, 8, -48, 32}, {0, 1, 1, 5, 14, 42, 112, 304}, 40] (* Jean-François Alcover, Dec 06 2017 *)

CROSSREFS

Cf. A005418.

Sequence in context: A147978 A266941 A034549 * A180774 A210972 A197607

Adjacent sequences:  A232489 A232490 A232491 * A232493 A232494 A232495

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Dec 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 4 12:55 EST 2021. Contains 349525 sequences. (Running on oeis4.)