login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or vertically, with no adjacent elements equal
8

%I #4 Nov 23 2013 13:12:49

%S 4,4,4,8,16,8,16,20,20,16,28,72,52,72,28,52,124,176,176,124,52,96,356,

%T 484,1120,484,356,96,176,664,1500,2788,2788,1500,664,176,324,1808,

%U 4416,16884,13532,16884,4416,1808,324,596,3572,13220,44528,71888,71888,44528

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every element next to itself plus and minus one within the range 0..2 horizontally or vertically, with no adjacent elements equal

%C Table starts

%C ...4....4......8......16.......28.........52..........96..........176

%C ...4...16.....20......72......124........356.........664.........1808

%C ...8...20.....52.....176......484.......1500........4416........13220

%C ..16...72....176....1120.....2788......16884.......44528.......255432

%C ..28..124....484....2788....13532......71888......370876......1936620

%C ..52..356...1500...16884....71888.....798692.....3508240.....38129964

%C ..96..664...4416...44528...370876....3508240....31802528....296151320

%C .176.1808..13220..255432..1936620...38129964...296151320...5824262024

%C .324.3572..39524..706796.10086748..171206912..2734362948..45696457832

%C .596.9148.117892.3869856.52577472.1824149740.25388000332.894239301036

%H R. H. Hardin, <a href="/A232406/b232406.txt">Table of n, a(n) for n = 1..312</a>

%F Empirical for column k:

%F k=1: a(n) = a(n-1) +a(n-2) +a(n-3)

%F k=2: [order 9]

%F k=3: [order 12]

%F k=4: [order 29]

%F k=5: [order 56]

%e Some solutions for n=4 k=4

%e ..0..1..2..0..1....0..1..0..1..2....2..1..2..1..2....0..1..2..1..2

%e ..1..2..0..1..2....1..2..1..2..1....1..0..1..0..1....1..2..1..0..1

%e ..2..1..2..0..1....2..1..0..1..0....0..1..0..1..2....0..1..0..1..0

%e ..1..0..1..2..0....1..2..1..0..1....1..2..1..2..1....1..2..1..2..1

%e ..2..1..0..1..2....0..1..0..1..2....2..1..0..1..0....0..1..0..1..2

%Y Column 1 is 4*A000073(n+1)

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 23 2013