Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Aug 05 2021 21:45:27
%S 1,2,16,48,10140,6552,721125376,3620732928,278799279816,29925033224,
%T 229926056690973293936640,892398340719534485274624,
%U 603207249820766251389767637583758341569376980491272,240171846906336440253785749946778562802349467993472
%N Height of algebraic number 1 + sqrt(2) + ... + sqrt(n).
%C Let p(z) be the monic minimal polynomial of sum(j=1..n, sqrt(j)) over the integers.
%C a(n) is the maximum of the absolute values of the coefficients of p(z).
%C The degree of p(z) is at most A048656(n). Is it always equal to A048656(n)?
%H Robert Israel, <a href="/A232209/b232209.txt">Table of n, a(n) for n = 1..18</a>
%H Springer, Encyclopedia of Mathematics, <a href="http://www.encyclopediaofmath.org/index.php/Algebraic_number">Algebraic number</a>
%e For n = 1 the minimal polynomial of 1 is z - 1 so a(1) = 1.
%e For n = 2 the minimal polynomial of 1 + sqrt(2) is z^2 - 2*z - 1 so a(2) = 2.
%p for n from 1 to 15 do
%p a:= convert(add(sqrt(i),i=1..n), RootOf);
%p P:= evala(Norm(a-z));
%p A[n]:= max(map(abs,[coeffs(P,z)]));
%p od:
%p seq(A[n],n=1..15); # _Robert Israel_, Sep 10 2014
%t a[n_] := CoefficientList[ MinimalPolynomial[ Sqrt[Range[n]] // Total, x], x] // Abs // Max; Array[a, 12] (* _Jean-François Alcover_, Apr 29 2019 *)
%o (GAP) a:=function(n)
%o return MinimalPolynomial(Rationals, Sum([1..n], x->Sqrt(x)));
%o end; # _Charles R Greathouse IV_, Sep 12 2014
%Y Cf. A048656.
%K nonn
%O 1,2
%A _Robert Israel_, Sep 10 2014