login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A232177
Least positive k such that triangular(n) + triangular(k) is a square.
3
1, 2, 1, 2, 3, 1, 5, 6, 7, 8, 9, 5, 2, 12, 13, 1, 15, 16, 17, 3, 5, 20, 2, 22, 23, 8, 4, 26, 12, 3, 29, 30, 1, 5, 33, 34, 4, 36, 37, 15, 6, 29, 22, 5, 43, 19, 45, 7, 15, 48, 6, 50, 11, 52, 8, 41, 22, 7, 57, 58, 59, 9, 26, 62, 8, 64, 19, 66, 10, 68, 5, 9, 71, 2
OFFSET
0,2
COMMENTS
Triangular(k) = A000217(k) = k*(k+1)/2.
For n>1, a(n) <= n-1, because with k=n-1: triangular(n) + triangular(k) = n*(n+1)/2 + (n-1)*n/2 = n^2.
MATHEMATICA
Table[k = 1; tri = n*(n + 1)/2; While[k <= n+2 && ! IntegerQ[Sqrt[tri + k*(k + 1)/2]], k++]; k, {n, 0, 100}] (* T. D. Noe, Nov 21 2013 *)
PROG
(Python)
import math
for n in range(77):
tn = n*(n+1)//2
for k in range(1, n+9):
sum = tn + k*(k+1)//2
r = int(math.sqrt(sum))
if r*r == sum:
print(str(k), end=', ')
break
CROSSREFS
Cf. A082183 (least k>0 such that triangular(n) + triangular(k) is a triangular number).
Cf. A212614 (least k>1 such that triangular(n) * triangular(k) is a triangular number).
Cf. A232176 (least k>0 such that n^2 + triangular(k) is a square).
Cf. A232179 (least k>=0 such that n^2 + triangular(k) is a triangular number).
Cf. A101157 (least k>0 such that triangular(n) + k^2 is a triangular number).
Cf. A232178 (least k>=0 such that triangular(n) + k^2 is a square).
Sequence in context: A162453 A008313 A334550 * A111377 A014046 A243919
KEYWORD
nonn
AUTHOR
Alex Ratushnyak, Nov 20 2013
STATUS
approved