login
Number of (2+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #4 Nov 19 2013 08:12:15

%S 44,728,10956,169692,2616952,40399768,623543776,9624373808,

%T 148550587192,2292857494812,35389922134468,546238342870352,

%U 8431109896279836,130132963416612180,2008583492065392256,31002196055330559468

%N Number of (2+1)X(n+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Row 2 of A232137

%H R. H. Hardin, <a href="/A232139/b232139.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 15*a(n-1) +16*a(n-2) -163*a(n-3) +305*a(n-4) +116*a(n-5) -2324*a(n-6) +1718*a(n-7) -5922*a(n-8) +14296*a(n-9) +18892*a(n-10) -15292*a(n-11) -21000*a(n-12) -12320*a(n-13) -17184*a(n-14) +11072*a(n-15) +5120*a(n-17)

%e Some solutions for n=3

%e ..0..1..0..1....0..1..1..2....0..1..2..2....0..1..2..2....0..1..0..2

%e ..1..2..1..2....0..0..2..2....2..1..0..2....0..1..0..2....1..0..0..2

%e ..1..0..1..2....2..0..0..1....2..2..0..1....1..2..0..1....2..1..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 19 2013