login
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order
15

%I #4 Nov 19 2013 08:10:31

%S 6,36,44,200,728,328,1140,10956,14752,2448,6468,169692,602468,298912,

%T 18272,36752,2616952,25364480,33162868,6056640,136384,208772,40399768,

%U 1063744484,3795674252,1825568436,122721280,1017984,1186044,623543776

%N T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Table starts

%C .....6......36........200.........1140............6468.............36752

%C ....44.....728......10956.......169692.........2616952..........40399768

%C ...328...14752.....602468.....25364480......1063744484.......44671124016

%C ..2448..298912...33162868...3795674252....433383414596....49550984711452

%C .18272.6056640.1825568436.568008109436.176569302110496.54960219182423136

%H R. H. Hardin, <a href="/A232137/b232137.txt">Table of n, a(n) for n = 1..143</a>

%F Empirical for column k:

%F k=1: a(n) = 8*a(n-1) -4*a(n-2)

%F k=2: a(n) = 22*a(n-1) -36*a(n-2) +16*a(n-3)

%F k=3: [order 8]

%F k=4: [order 14]

%F k=5: [order 34] for n>36

%F Empirical for row n:

%F n=1: a(n) = 6*a(n-1) -11*a(n-3) +4*a(n-4)

%F n=2: [order 17]

%F n=3: [order 76] for n>77

%e Some solutions for n=2 k=4

%e ..0..1..2..0..1....0..1..2..0..1....0..1..2..1..0....0..1..2..0..0

%e ..0..0..1..2..1....0..0..2..0..2....1..0..2..0..2....0..0..2..2..1

%e ..1..2..1..0..2....0..2..0..1..2....1..2..1..2..0....2..0..2..1..2

%Y Column 1 is A102591

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Nov 19 2013