login
Number of (n+1) X (4+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.
1

%I #6 Apr 17 2022 20:51:01

%S 1140,169692,25364480,3795674252,568008109436,85000031249096,

%T 12719895449388800,1903478569962529436,284847519195214207740,

%U 42626226776754332086840,6378834593164563425802400

%N Number of (n+1) X (4+1) 0..2 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with values 0..2 introduced in row major order.

%C Column 4 of A232137.

%H R. H. Hardin, <a href="/A232133/b232133.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 191*a(n-1) -6912*a(n-2) +115408*a(n-3) -1111971*a(n-4) +6750425*a(n-5) -26789260*a(n-6) +69724040*a(n-7) -116179712*a(n-8) +120732608*a(n-9) -77737728*a(n-10) +30931968*a(n-11) -7383040*a(n-12) +917504*a(n-13) -32768*a(n-14).

%e Some solutions for n=1

%e ..0..1..2..1..2....0..1..0..1..2....0..1..0..1..1....0..1..2..0..2

%e ..1..2..0..2..1....1..2..0..1..0....2..0..2..0..2....2..1..0..1..2

%Y Cf. A232137.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 19 2013