Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Nov 17 2017 21:12:07
%S 2328,9310,34297,113147,750735,1600573,5546909,9380741,23316851,
%T 71271069,98488755,233043067,384847485,485930975,751588475,1356370173,
%U 2299880351,2710679045,4306310927,5734323819,6578172579,9721485395,12413061671,17537591045,26866372821
%N Number of groups of order prime(n)^7.
%H Eric M. Schmidt, <a href="/A232107/b232107.txt">Table of n, a(n) for n = 1..1000</a>
%H E. A. O'Brien and M. R. Vaughan-Lee, <a href="http://dx.doi.org/10.1016/j.jalgebra.2005.01.019">The groups of order p^7 for odd prime p</a>, J. Algebra 292, 243-258, 2005.
%H <a href="/index/Gre#groups">Index entries for sequences related to groups</a>
%F For a prime p > 5, the number of groups of order p^7 is 3p^5 + 12p^4 + 44p^3 + 170p^2 + 707p + 2455 + (4p^2 + 44p + 291)gcd(p - 1, 3) + (p^2 + 19p + 135)gcd(p - 1, 4) + (3p + 31)gcd(p - 1, 5) + 4 gcd(p - 1, 7) + 5 gcd(p - 1, 8) + gcd(p - 1, 9).
%p a:= n-> `if`(n<4, [2328, 9310, 34297][n], (c-> 3391 +(1242+
%p (404 +(122 +(27 +3*c)*c)*c)*c)*c +(339 +(52 +4*c)*c)*igcd(c, 3)+
%p (155 +(21 +c)*c)*igcd(c, 4) +(34 +3*c)*igcd(c, 5) +4*igcd(c, 7)+
%p 5*igcd(c, 8) +igcd(c, 9))(ithprime(n)-1)):
%p seq(a(n), n=1..25); # _Alois P. Heinz_, Nov 17 2017
%o (Sage) def A232107(n) : p = nth_prime(n); return 2328 if p==2 else 9310 if p==3 else 34297 if p==5 else 3*p^5 + 12*p^4 + 44*p^3 + 170*p^2 + 707*p + 2455 + (4*p^2 + 44*p + 291)*gcd(p - 1, 3) + (p^2 + 19*p + 135)*gcd(p - 1, 4) + (3*p + 31)*gcd(p - 1, 5) + 4*gcd(p - 1, 7) + 5*gcd(p - 1, 8) + gcd(p - 1, 9)
%o (GAP) A232107 := Concatenation([2328, 9310, 34297], List(Filtered([7..10^5], IsPrime), p -> 3 * p^5 + 12 * p^4 + 44 * p^3 + 170 * p^2 + 707 * p + 2455 + (4 * p^2 + 44 * p + 291) * Gcd(p-1, 3) + (p^2 + 19 * p + 135) * Gcd(p-1, 4) + (3 * p + 31) * Gcd(p-1, 5) + 4 * Gcd(p-1, 7) + 5 * Gcd(p-1, 8) + Gcd(p-1, 9))); # _Muniru A Asiru_, Nov 16 2017
%Y Cf. A000001, A000679, A090091, A090130, A090140, A232105, A232106.
%Y Cf. A092759.
%K nonn
%O 1,1
%A _Eric M. Schmidt_, Nov 21 2013