login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A232104
Primes p with same last three digits as k, where prime(k) = p.
3
12491, 14723, 39119, 42437, 63347, 69931, 79817, 99551, 129083, 135637, 147647, 165103, 183637, 190181, 208697, 228281, 258743, 263071, 271787, 284833, 296753, 297833, 302173, 304349, 314129, 340201, 341287, 344543, 351059, 357563, 391163
OFFSET
1,1
LINKS
FORMULA
a(n) = prime(A067841(n)).
EXAMPLE
1723, and prime(1723)= 14723, both end with 723.
MAPLE
P:= select(isprime, [2, seq(i, i=3..10^6, 2)]):
P[select(t -> P[t]-t mod 1000 = 0, [seq(i, i=3..nops(P), 2)])]; # Robert Israel, Oct 03 2017
MATHEMATICA
Select[Prime[Range[34000]], Mod[#, 1000]==Mod[PrimePi[#], 1000]&] (* Harvey P. Dale, Dec 30 2017 *)
PROG
(PARI)
cutdigit(a, p, q)=(a%10^q)\10^(p-1)
{for(n=1, 40000, p=prime(n); if(cutdigit(p, 1, 3)==cutdigit(n, 1, 3), print(p)))}
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Antonio Roldán, Nov 18 2013
STATUS
approved