%I #31 Sep 24 2019 05:06:23
%S 1,1,1,1,5,1,1,15,15,1,1,39,106,39,1,1,97,582,582,97,1,1,237,2952,
%T 6074,2952,237,1,1,575,14488,56778,56778,14488,575,1,1,1391,69982,
%U 510600,943340,510600,69982,1391,1,1,3361,335356,4502836,15009212,15009212
%N Square array read by antidiagonals: T(m,n) = number of ways of drawing a simple loop on an m x n rectangular lattice of dots in such a way that it touches each edge.
%C This sequence is to be read as a table:
%C 1, 1, 1, 1, 1, ...
%C 1, 5, 15, 39, ...
%C 1, 15, 106, ...
%C 1, 39, ...
%C 1, ...
%C ...
%C This represents the number of simple, closed loops that can be formed on an m x n lattice of dots in such a way that it touches each edge.
%C This sequence is related to A231829, called b(i,j) by a(i,j) = b(i,j) - 2 * b(i,j-1) + b(i,j-2) - 2 * b(i-1,j) + 4 * b(i-1,j-1) - 2 * b(j-1,j-2) + b(i-2,j) - 2 * b(i-2,j-1) + b(i-2,j-2).
%C Equivalently, the number of fixed polyominoes without holes that have a width of m and height of n. - _Andrew Howroyd_, Oct 04 2017
%H Andrew Howroyd, <a href="/A232103/b232103.txt">Table of n, a(n) for n = 1..325</a>
%H Jean-François Alcover, <a href="/A232103/a232103.txt">Mathematica program</a>
%F T(m, n) = U(m, n) - 2*U(m, n-1) + U(m, n-2) where U(m, n) = V(m, n) - 2*V(m-1, n) + V(m-2, n) and V(m, n) = A231829(m, n). - _Andrew Howroyd_, Oct 04 2017
%e Array begins:
%e ==============================================================
%e m\n| 1 2 3 4 5 6 7
%e ---|----------------------------------------------------------
%e 1 | 1 1 1 1 1 1 1...
%e 2 | 1 5 15 39 97 237 575...
%e 3 | 1 15 106 582 2952 14488 69982...
%e 4 | 1 39 582 6074 56778 510600 4502836...
%e 5 | 1 97 2952 56778 943340 15009212 234411981...
%e 6 | 1 237 14488 510600 15009212 419355340 11509163051...
%e 7 | 1 575 69982 4502836 234411981 11509163051 554485727288...
%e ... - _Andrew Howroyd_, Oct 04 2017
%e a(3,2) is 15, thus:
%e 1) 2) 3) 4) 5)
%e +-+-+-+ +-+-+-+ + +-+-+ +-+-+-+ +-+-+-+
%e | | | | | | | | | |
%e + +-+-+ +-+ +-+ +-+ +-+ + + +-+ +-+-+ +
%e | | | | | | | | | |
%e +-+ + + + +-+ + +-+-+ + +-+-+ + + + +-+
%e 6) 7) 8) 9) 10)
%e +-+-+-+ +-+-+ + +-+-+-+ +-+ + + + +-+ +
%e | | | | | | | | | |
%e + +-+ + +-+ +-+ +-+ + + + +-+-+ +-+ +-+
%e | | | | | | | | | | | |
%e +-+ +-+ + +-+-+ + +-+-+ +-+-+-+ +-+-+-+
%e 11) 12) 13) 14) 15)
%e +-+-+ + + + +-+ +-+ +-+ + +-+-+ +-+-+-+
%e | | | | | | | | | | | |
%e + +-+ +-+-+ + + +-+ + +-+ + + + + + +
%e | | | | | | | | | |
%e +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+
%Y Rows 2-3 are A034182, A293263.
%Y Main diagonal is A293261.
%Y Cf. A231829, A292357.
%K nonn,tabl
%O 1,5
%A _Douglas Boffey_, Nov 21 2013