%I #17 Sep 08 2022 08:46:06
%S 1543,3719,4289,5303,5641,6323,7001,7559,7673,8233,8681,9697,9923,
%T 12043,12377,12491,12941,14723,14951,15511,15959,17627,17959,18521,
%U 21739,21851,21961,22961,24847,25733,26177,28279,29723,30491,31489,32261,34259,34483
%N Primes p with same last two digits as k, where prime(k) = p.
%H Harvey P. Dale, <a href="/A232102/b232102.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = prime(A067838(n)).
%e 243 and prime(243)=1543, both end with 43.
%t sltdQ[k_]:=Module[{p=Prime[k]},Mod[p,100]==Mod[k,100]]; Prime[#]&/@ Select[ Range[4000],sltdQ] (* _Harvey P. Dale_, Dec 26 2021 *)
%o (PARI)
%o cutdigit(a,p,q)=(a%10^q)\10^(p-1)
%o {for(n=1,5000,p=prime(n);if(cutdigit(p,1,2)==cutdigit(n,1,2),print(p)))}
%o (Magma) [NthPrime(n): n in [1..5*10^3] | n mod 100 eq NthPrime(n) mod 100]; // _Bruno Berselli_, Nov 19 2013
%Y Cf. A085598, A067838, A232104.
%K nonn,base
%O 1,1
%A _Antonio Roldán_, Nov 18 2013