login
Number of 2 X n 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.
1

%I #7 Oct 02 2018 06:31:45

%S 4,7,15,34,79,184,426,984,2274,5258,12159,28117,65018,150347,347661,

%T 803931,1859013,4298789,9940535,22986529,53154136,122913828,284226412,

%U 657246261,1519818815,3514434954,8126793100,18792428087,43455684079

%N Number of 2 X n 0..1 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.

%H R. H. Hardin, <a href="/A232048/b232048.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) - 6*a(n-2) + 7*a(n-3) - 6*a(n-4) + 3*a(n-5) - a(n-6) - a(n-7) for n>8.

%F Empirical g.f.: x*(4 - 9*x + 11*x^2 - 12*x^3 + 8*x^4 - 3*x^5 - x^6 + x^7) / ((1 - x + x^2)*(1 - 3*x + 2*x^2 - 2*x^3 + 2*x^4 + x^5)). - _Colin Barker_, Oct 02 2018

%e Some solutions for n=7:

%e ..1..1..1..1..0..0..0....1..1..1..0..0..0..1....0..0..0..0..0..1..0

%e ..0..0..0..0..0..1..1....0..0..0..0..0..0..0....0..0..0..0..0..0..0

%Y Row 2 of A232047.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 17 2013