login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+1) X (2+1) 0..1 arrays with every element equal to some horizontal, vertical or antidiagonal neighbor, with top left element zero.
1

%I #7 Oct 02 2018 06:32:24

%S 11,76,521,3588,24719,170270,1172854,8078859,55648831,383320506,

%T 2640389883,18187544432,125279518221,862950891715,5944181874953,

%U 40944737993493,282035712335780,1942719551542674,13381848790314938

%N Number of (n+1) X (2+1) 0..1 arrays with every element equal to some horizontal, vertical or antidiagonal neighbor, with top left element zero.

%H R. H. Hardin, <a href="/A232032/b232032.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) - 5*a(n-3) - 2*a(n-4) - a(n-5) + 2*a(n-6) + 2*a(n-7) for n>8.

%F Empirical g.f.: x*(11 - x - 11*x^2 - 4*x^3 + 5*x^4 + 5*x^5 - x^7) / (1 - 7*x + 5*x^3 + 2*x^4 + x^5 - 2*x^6 - 2*x^7). - _Colin Barker_, Oct 02 2018

%e Some solutions for n=6:

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..0..1

%e ..1..0..0....1..1..0....0..0..1....0..0..0....0..1..1....0..1..1....0..1..0

%e ..1..1..0....1..1..0....1..1..0....0..1..0....1..0..0....0..0..1....0..0..0

%e ..1..1..1....1..0..1....0..0..1....1..1..1....1..1..0....0..0..0....1..0..1

%e ..1..0..1....1..0..1....0..0..1....0..1..0....1..1..1....0..1..0....1..1..0

%e ..1..0..1....0..0..0....1..1..1....0..0..0....0..0..1....1..1..0....0..0..0

%e ..1..0..1....1..1..1....0..0..1....1..1..1....1..1..1....1..1..0....1..1..0

%Y Column 2 of A232038.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 17 2013