%I #4 Nov 17 2013 06:53:10
%S 22,212,6443,196196,6129361,189686855,5882557816,182394008292,
%T 5654881014985,175330190566652,5436049185326305,168543263858408581,
%U 5225638055456575458,162019464264673601823,5023369120146020620770
%N Number of nX4 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors
%C Column 4 of A232023
%H R. H. Hardin, <a href="/A232019/b232019.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 22*a(n-1) +291*a(n-2) +205*a(n-3) -17170*a(n-4) -23642*a(n-5) +202540*a(n-6) +388609*a(n-7) -834295*a(n-8) -1784905*a(n-9) +1651195*a(n-10) +3413016*a(n-11) -1620542*a(n-12) -2409175*a(n-13) +65386*a(n-14) +316887*a(n-15) -2491*a(n-16) -751*a(n-17) -64*a(n-18) for n>19
%e Some solutions for n=4
%e ..1..1..0..0....1..1..0..0....0..0..0..0....0..0..2..2....0..0..0..0
%e ..0..0..0..1....0..0..1..1....0..0..2..2....0..1..0..0....1..1..1..2
%e ..1..0..0..0....2..2..2..1....1..0..0..2....2..0..1..0....0..0..0..1
%e ..0..0..0..1....1..1..1..2....0..0..0..0....0..2..0..0....2..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 17 2013