%I
%S 3,22,121,704,4059,23422,135166,779977,4500958,25973244,149881402,
%T 864906711,4991036946,28801314179,166201073269,959081123649,
%U 5534480515641,31937313562863,184297694197368,1063509616098391
%N Number of n X 2 0..2 arrays with no element less than a strict majority of its horizontal and antidiagonal neighbors.
%H R. H. Hardin, <a href="/A232017/b232017.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n1) + 13*a(n2) + 16*a(n3) + 7*a(n4) + a(n5).
%F Empirical g.f.: x*(1 + x)*(3 + x)*(1 + 3*x + x^2) / (1  3*x  13*x^2  16*x^3  7*x^4  x^5).  _Colin Barker_, Oct 01 2018
%e Some solutions for n=7:
%e ..1..1....2..0....1..1....1..1....0..0....0..0....2..0....2..0....1..1....1..0
%e ..1..0....0..0....0..0....0..0....1..0....0..0....0..1....0..0....1..2....0..1
%e ..0..1....0..1....2..1....1..2....0..0....1..1....2..2....1..2....0..0....1..1
%e ..0..0....2..0....0..0....1..1....1..2....2..2....0..0....1..1....1..1....2..0
%e ..0..1....0..0....0..0....0..0....2..2....2..2....1..1....2..1....2..1....0..1
%e ..2..0....1..1....0..2....0..0....2..1....1..0....1..0....0..0....1..1....0..0
%e ..0..1....1..1....2..2....2..2....1..1....0..2....0..2....1..1....1..1....2..2
%Y Column 2 of A232023.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 17 2013
