login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of iterations of A176341 ("position of n in Pi") until a value is reached for the second time, when starting with n, or -1 if no value is repeated.
6

%I #34 Oct 19 2024 15:57:32

%S 4,1,12,4,13,14,11,10

%N Number of iterations of A176341 ("position of n in Pi") until a value is reached for the second time, when starting with n, or -1 if no value is repeated.

%C See A232014 for a variant based on A032445 instead of A176341.

%C Some loops: (1), (711939213), (0, 32, 15, 3), (19, 37, 46), (40, 70, 96, 180, 3664, 24717, 15492, 84198, 65489, 3725, 16974, 41702, 3788, 5757, 1958, 14609, 62892, 44745, 9385, 169).

%C See Hans Havermann table (in links) for primary unknown-length evolutions.

%H David G. Andersen, <a href="http://www.angio.net/pi">Loop Sequences within Pi, on The Pi-Search Page</a> (Search 2*10^8 decimal digits of Pi).

%H Hans Havermann, <a href="http://chesswanks.com/seq/a232013.txt">Information table of n, a(n) for n=0..100</a>.

%H Joaquin Navarro, <a href="http://images-archive.math.cnrs.fr/Les-secrets-du-nombre-Pi.html">Les secrets du nombre Pi</a> (Book review, in French).

%H James Taylor, <a href="http://www.subidiom.com/pi/">Irrational Numbers Search Engine</a> (Search 2*10^9 decimal digits of Pi).

%H Ady Tzidon, <a href="http://perplexus.info/show.php?pid=7746&amp;op=sol">Loops in Pi</a>.

%e a(0)=4 since A176341(0)=32 (position of the first "0" in Pi's digits), A176341(32)=15 (position of the first "32" in Pi's digits), A176341(15)=3 (position of the first "15" in Pi's digits), A176341(3)=0 (position of the first "3" in Pi's digits); here we find the "0" again after 4 iterations, thus a(0)=4.

%e a(1)=1 since A176341(1)=1 (the first "1" occurs at position 1 in Pi's digits), which already "closes the loop" after 1 iteration.

%e a(2)=12 because the iterations yield 2 > 6 > 7 > 13 > 110 > 174 > 155 > 314 > 0 > 32 > 15 > 3 > 0, here we re-enter the loop (of length 4) after 12 iterations.

%t pidigits = First[RealDigits[N[Pi, 10^6]]];

%t Table[ lst = {}; test = n; steps = 1;

%t While[AppendTo[lst, test]; !

%t MemberQ[lst,

%t test = First[

%t First[SequencePosition[pidigits, IntegerDigits[test], 1]]] - 1],

%t steps++ ]; steps, {n, 0, 7}] (* _Robert Price_, Aug 31 2019 *)

%o (PARI) A232013(n)={my(u=0);for(i=1,9e9,u+=1<<n;bittest(u,n=A176341(n))&&return(i))}

%K nonn,base,more

%O 0,1

%A _M. F. Hasler_, Nov 16 2013

%E Edited by _Hans Havermann_, Aug 01 2014