%I #4 Nov 16 2013 13:27:43
%S 39,406,5778,80511,1129755,15851094,222394359,3120433160,43782113196,
%T 614302069661,8619184643070,120934641149878,1696817594085078,
%U 23807819771598730,334044315193101606,4686930858103951041
%N Number of (n+1)X(4+1) 0..1 arrays with no element having a strict majority of its horizontal and antidiagonal neighbors equal to one
%C Column 4 of A231997
%H R. H. Hardin, <a href="/A231993/b231993.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 15*a(n-1) +10*a(n-2) -363*a(n-3) +300*a(n-4) +2289*a(n-5) -2814*a(n-6) -3711*a(n-7) +4416*a(n-8) +1713*a(n-9) -1638*a(n-10) -219*a(n-11) +181*a(n-12) +6*a(n-13) -4*a(n-14)
%e Some solutions for n=4
%e ..0..0..1..1..0....0..0..0..0..0....1..0..0..0..0....1..0..0..1..0
%e ..0..0..0..0..0....0..1..1..0..1....0..0..0..0..0....0..0..0..0..1
%e ..1..0..0..0..0....0..0..0..1..0....1..1..0..0..1....0..0..0..0..0
%e ..1..0..0..0..0....0..0..0..0..1....1..0..0..0..0....1..0..0..1..1
%e ..1..1..0..0..0....0..0..0..0..0....0..1..0..0..0....0..0..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 16 2013