OFFSET
0,1
COMMENTS
In spherical geometry, the solid angle (in steradians) covered by a rectangle with arc-length sides r and s (in radians) equals Omega = 4*arcsin(sin(s/2)*sin(r/2)). For this constant, r = s = 1.
Note: It is a common mistake to think that 1 radian squared gives one steradian! See also the discussion in A231984.
REFERENCES
G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spherical Trigonometry, Princeton University Press, 2012, ISBN 978-0691148922.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..2000
Wikipedia, Solid angle, Section 3.3 (Pyramid).
Wikipedia, Steradian.
FORMULA
Equals 4*arcsin(sin(1/2)^2).
EXAMPLE
0.9276894753223136407956132381459549176304040064245743408999869...
MATHEMATICA
RealDigits[4 * ArcSin[Sin[1/2]^2], 10, 120][[1]] (* Amiram Eldar, May 16 2023 *)
CROSSREFS
KEYWORD
AUTHOR
Stanislav Sykora, Nov 17 2013
STATUS
approved