login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231977
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal and vertical neighbors equal to one
8
9, 16, 16, 36, 56, 36, 81, 169, 169, 81, 169, 550, 841, 550, 169, 361, 1764, 4489, 4489, 1764, 361, 784, 5680, 24964, 43983, 24964, 5680, 784, 1681, 18225, 136900, 417316, 417316, 136900, 18225, 1681, 3600, 58596, 741321, 3844551, 6507601, 3844551
OFFSET
1,1
COMMENTS
Table starts
....9.....16........36..........81...........169..............361
...16.....56.......169.........550..........1764.............5680
...36....169.......841........4489.........24964...........136900
...81....550......4489.......43983........417316..........3844551
..169...1764.....24964......417316.......6507601........100540729
..361...5680....136900.....3844551.....100540729.......2641967397
..784..18225....741321....35366809....1557328369......69043343121
.1681..58596...4024036...328433132...24225988609....1809552010404
.3600.188356..21911761..3052452001..376708702756...47496507516441
.7744.605458.119268241.28290095075.5849616285604.1245162776547248
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: a(n) = 3*a(n-1) +2*a(n-3) +4*a(n-4) -10*a(n-5) -2*a(n-6) -a(n-8) +a(n-9)
k=3: [order 21]
k=4: [order 49]
EXAMPLE
Some solutions for n=2 k=4
..0..1..1..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..1..0
..0..0..0..0..0....1..0..0..0..0....0..1..0..0..0....0..0..0..0..0
..1..0..0..1..0....0..0..0..1..0....0..1..0..0..0....1..0..0..1..1
CROSSREFS
Column 1 is A207170 for n>1
Sequence in context: A092095 A186851 A201266 * A269563 A217570 A274188
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 16 2013
STATUS
approved