login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231961
Expansion of b(q)^3 - 3*c(q)^3 in powers of q where b(), c() are cubic AGM theta functions.
2
1, -90, -216, -738, -1170, -1728, -2160, -4500, -3672, -6570, -6480, -8640, -9594, -15300, -10800, -17280, -18450, -20736, -19656, -32580, -22464, -36900, -32400, -38016, -36720, -54090, -36720, -59058, -58500, -60480, -53136, -86580, -58968, -86400, -77760
OFFSET
0,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
FORMULA
Expansion of (eta(q)^3 / eta(q^3))^3 - 81 * (eta(q^3)^3 / eta(q))^3 in powers of q.
G.f. is a period 1 Fourier series which satisfies f(-1 / (3 t)) = - 3^(5/2) (t/i)^3 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A231962.
a(n) = A231948(3*n) = A231962(3*n).
EXAMPLE
G.f. = 1 - 90*q - 216*q^2 - 738*q^3 - 1170*q^4 - 1728*q^5 - 2160*q^6 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; CoefficientList[Series[(eta[q]^3/ eta[q^3])^3 - 81*(eta[q^3]^3/eta[q])^3, {q, 0, 50}], q] (* G. C. Greubel, Aug 08 2018 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 / eta(x^3 + A))^3 - 81 * x * (eta(x^3 + A)^3 / eta(x + A))^3, n))};
CROSSREFS
Sequence in context: A044803 A235081 A074213 * A237131 A363729 A255784
KEYWORD
sign
AUTHOR
Michael Somos, Nov 15 2013
STATUS
approved