login
A231940
T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors
10
4, 4, 16, 16, 84, 64, 50, 668, 318, 256, 144, 5070, 8426, 1328, 1024, 422, 42104, 206808, 152180, 6064, 4096, 1268, 326010, 4736026, 11159202, 2462572, 26918, 16384, 3823, 2511252, 94464137, 691418144, 518972238, 36885538, 116909, 65536, 11472
OFFSET
1,1
COMMENTS
Table starts
.......4.......4............16...............50................144
......16......84...........668.............5070..............42104
......64.....318..........8426...........206808............4736026
.....256....1328........152180.........11159202..........691418144
....1024....6064.......2462572........518972238........86074040354
....4096...26918......36885538......23280281589.....10417626293694
...16384..116909.....586971925....1098832065447...1320620287047433
...65536..511264....9394148948...52087504055935.167980047970274816
..262144.2248196..147360195020.2432351670277323
.1048576.9868600.2323912599668
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: [order 19] for n>20
k=3: [order 65] for n>66
Empirical for row n:
n=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
n=2: [order 15]
EXAMPLE
Some solutions for n=3 k=4
..0..0..0..1....0..0..0..3....2..0..0..2....0..2..2..1....0..0..1..0
..2..0..2..2....3..0..0..3....3..3..0..0....3..0..0..2....2..0..0..3
..2..3..0..0....1..2..3..0....1..0..0..2....2..0..0..0....0..2..3..2
CROSSREFS
Column 1 is A000302
Column 2 is A231741
Row 1 is A203094 for n>1
Sequence in context: A213173 A222956 A170833 * A129884 A137725 A240035
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 15 2013
STATUS
approved