|
|
A231940
|
|
T(n,k)=Number of nXk 0..3 arrays with no element less than a strict majority of its horizontal, diagonal and antidiagonal neighbors
|
|
10
|
|
|
4, 4, 16, 16, 84, 64, 50, 668, 318, 256, 144, 5070, 8426, 1328, 1024, 422, 42104, 206808, 152180, 6064, 4096, 1268, 326010, 4736026, 11159202, 2462572, 26918, 16384, 3823, 2511252, 94464137, 691418144, 518972238, 36885538, 116909, 65536, 11472
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Table starts
.......4.......4............16...............50................144
......16......84...........668.............5070..............42104
......64.....318..........8426...........206808............4736026
.....256....1328........152180.........11159202..........691418144
....1024....6064.......2462572........518972238........86074040354
....4096...26918......36885538......23280281589.....10417626293694
...16384..116909.....586971925....1098832065447...1320620287047433
...65536..511264....9394148948...52087504055935.167980047970274816
..262144.2248196..147360195020.2432351670277323
.1048576.9868600.2323912599668
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..84
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: [order 19] for n>20
k=3: [order 65] for n>66
Empirical for row n:
n=1: a(n) = 4*a(n-1) -6*a(n-2) +10*a(n-3) -5*a(n-4) +6*a(n-5) -a(n-6) +a(n-7) for n>8
n=2: [order 15]
|
|
EXAMPLE
|
Some solutions for n=3 k=4
..0..0..0..1....0..0..0..3....2..0..0..2....0..2..2..1....0..0..1..0
..2..0..2..2....3..0..0..3....3..3..0..0....3..0..0..2....2..0..0..3
..2..3..0..0....1..2..3..0....1..0..0..2....2..0..0..0....0..2..3..2
|
|
CROSSREFS
|
Column 1 is A000302
Column 2 is A231741
Row 1 is A203094 for n>1
Sequence in context: A213173 A222956 A170833 * A129884 A137725 A240035
Adjacent sequences: A231937 A231938 A231939 * A231941 A231942 A231943
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
R. H. Hardin, Nov 15 2013
|
|
STATUS
|
approved
|
|
|
|