OFFSET
1,3
REFERENCES
L. B. W. Jolley, Summation of series, Dover Publications Inc. (New York), 1961, p. 28 (formula 154).
Jean-Marie Monier, Analyse, Exercices corrigés, 2ème année MP, Dunod, 1997, Exercice 3.15, p. 269.
LINKS
Ivan Panchenko, Table of n, a(n) for n = 1..1000
Jean-Paul Allouche and Jeffrey Shallit, Sums of digits and the Hurwitz zeta function, in: K. Nagasaka and E. Fouvry (eds.), Analytic Number Theory, Lecture Notes in Mathematics, Vol. 1434, Springer, Berlin, Heidelberg, 1990, pp. 19-30.
Michael Penn, A nice integral, YouTube video, 2022.
FORMULA
Equals 1 + Sum_{m>=1} -(-1)^m/(2*m*(2*m+1)) = 1 + 1/(2*3) - 1/(4*5) + 1/(6*7) - 1/(8*9) + ... .
From Amiram Eldar, Jul 16 2020: (Start)
Equals Integral_{x=1..oo} arctan(x)/x^2 dx.
Equals 1 + Integral_{x=0..1/2} log(4*x^2 + 1) dx. (End)
From Bernard Schott, Sep 07 2020: (Start)
Equals -Sum_{n>=1} (-1)^(n*(n+1)/2) / n [compare with A196521 formula].
Equals Sum_{n>=0} (32*n^2+40*n+11) / (4*(n+1)*(2*n+1)*(4*n+1)*(4*n+3)). (End)
Equals 1 + Sum_{k>=1} A037800(k)/(k*(k+1)) (Allouche and Shallit, 1990). - Amiram Eldar, Jun 01 2021
EXAMPLE
1.131971753677420964324276906548964005087042417023904082304076152823650...
MATHEMATICA
RealDigits[Pi/4 + Log[2]/2, 10, 90][[1]]
PROG
(PARI) default(realprecision, 100); (Pi + 2*log(2))/4 \\ G. C. Greubel, Aug 24 2018
(Magma) SetDefaultRealField(RealField(100)); R:=RealField(); (Pi(R) + 2*Log(2))/4; // G. C. Greubel, Aug 24 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Bruno Berselli, Nov 15 2013
STATUS
approved