login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of 1/sqrt(2*Pi).
11

%I #30 Sep 22 2024 17:47:50

%S 3,9,8,9,4,2,2,8,0,4,0,1,4,3,2,6,7,7,9,3,9,9,4,6,0,5,9,9,3,4,3,8,1,8,

%T 6,8,4,7,5,8,5,8,6,3,1,1,6,4,9,3,4,6,5,7,6,6,5,9,2,5,8,2,9,6,7,0,6,5,

%U 7,9,2,5,8,9,9,3,0,1,8,3,8,5,0,1,2,5,2,3,3,3,9,0,7,3,0,6,9,3,6,4,3,0,3,0,2

%N Decimal expansion of 1/sqrt(2*Pi).

%C Maximum of the probability density for standard error distribution (i.e., normal distribution density with unit variance).

%H G. C. Greubel, <a href="/A231863/b231863.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..2000 from Stanislav Sykora)

%H Amir Behrouzi-Far and Doron Zeilberger, <a href="https://arxiv.org/abs/1905.07827">On the Average Maximal Number of Balls in a Bin Resulting from Throwing r Balls into n Bins T times</a>, arXiv:1905.07827 [math.CO], 2019.

%H Marcus Michelen, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Michelen/mich3.html">A Short Note on the Average Maximal Number of Balls in a Bin</a>, Journal of Integer Sequences, Vol. 23 (2020), Article 20.1.7. See C 2,1 Table 2 p. 6. And also on <a href="https://arxiv.org/abs/1905.08933">arXiv</a>, arXiv:1905.08933 [math.CO], 2019.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Normal_density_function">Normal distribution</a>.

%H Roger Zarnowski and Charles Diminnie, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.10.No.10.pdf">Solution to Problem 934</a>, Pi Mu Epsilon Journal, Vol. 10, No. 10 (1999), pp. 846-847.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals Integral_{x=-oo..oo} sin(Pi^2*x^2 + 1/x^2) dx (Zarnowski and Diminnie, 1999). - _Amiram Eldar_, May 21 2022

%e 0.39894228040143267793994605993438186847585863116493465766592582967...

%t RealDigits[1/Sqrt[2*Pi], 10, 100][[1]] (* _G. C. Greubel_, Jul 27 2018 *)

%o (PARI) 1/sqrt(2*Pi) \\ _G. C. Greubel_, Jul 27 2018

%o (Magma) R:= RealField(); 1/Sqrt(2*Pi(R)); // _G. C. Greubel_, Jul 27 2018

%Y Cf. A019727 (inverse), A000796 (Pi).

%K nonn,cons,easy

%O 0,1

%A _Stanislav Sykora_, Nov 14 2013