%I #4 Nov 13 2013 15:39:50
%S 32,252,1699,12044,92380,678081,4939746,36427030,268422913,1972567930,
%T 14505462130,106728541421,785061434964,5774194022898,42473427237535,
%U 312423970277246,2298061685110392,16903657650401177,124337398895901744
%N Number of (n+1)X(3+1) 0..1 arrays with no element having a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors equal to one
%C Column 3 of A231806
%H R. H. Hardin, <a href="/A231801/b231801.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) +10*a(n-2) +63*a(n-3) +42*a(n-4) -662*a(n-5) -1140*a(n-6) +905*a(n-7) -1388*a(n-8) +5735*a(n-9) +6185*a(n-10) -3923*a(n-11) +19540*a(n-12) +11566*a(n-13) -49577*a(n-14) +77585*a(n-15) -154556*a(n-16) +110582*a(n-17) -87034*a(n-18) +10724*a(n-19) +21118*a(n-20) -19280*a(n-21) +32064*a(n-22) +87255*a(n-23) -49901*a(n-24) +5955*a(n-25) -30246*a(n-26) +2649*a(n-27) +15546*a(n-28) -15886*a(n-29) -9862*a(n-30) +11413*a(n-31) +35*a(n-32) -1316*a(n-33) -1895*a(n-34) +449*a(n-35) +1537*a(n-36) +876*a(n-37) -132*a(n-38) -30*a(n-39) -22*a(n-40) -55*a(n-41) -15*a(n-42) -24*a(n-43) -12*a(n-44) -2*a(n-45)
%e Some solutions for n=5
%e ..0..0..0..1....1..0..0..0....1..1..0..0....1..0..0..0....0..0..0..1
%e ..1..0..0..0....0..0..1..0....0..0..0..1....0..1..0..1....1..0..0..1
%e ..1..0..0..1....1..0..1..0....0..0..1..1....0..0..0..1....0..1..0..0
%e ..0..0..0..0....0..0..0..0....0..1..0..0....0..0..0..1....0..0..0..0
%e ..0..0..1..0....0..0..0..0....0..0..0..0....1..0..0..1....0..0..0..0
%e ..1..0..0..1....1..0..1..0....1..0..1..0....1..0..0..1....0..0..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 13 2013