%I
%S 9,33,100,315,961,3024,9409,29319,91204,284279,885481,2758192,8590761,
%T 26760591,83356900,259648623,808776721,2519272112,7847302225,
%U 24443615655,76139572356,237167776135,738755721081,2301155717168,7167887098681
%N Number of (1+1) X (n+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one.
%H R. H. Hardin, <a href="/A231765/b231765.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n1) + a(n3) + 7*a(n4)  20*a(n5)  2*a(n6)  4*a(n8) + 8*a(n9).
%F Empirical g.f.: x*(9 + 6*x + x^2 + 6*x^3  80*x^4  10*x^5  8*x^7 + 32*x^8) / ((1  3*x  x^2 + 2*x^3)*(1 + x^2  6*x^4  4*x^6)).  _Colin Barker_, Oct 01 2018
%e Some solutions for n=7:
%e ..0..0..0..0..0..1..0..0....1..0..0..0..0..1..0..0....0..1..1..0..0..1..0..0
%e ..0..1..0..0..1..0..1..0....1..1..0..0..0..0..0..0....0..0..0..1..0..0..1..0
%Y Row 1 of A231764.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 13 2013
