login
A231764
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one
15
9, 33, 16, 100, 136, 36, 315, 625, 660, 81, 961, 2976, 5041, 3213, 169, 3024, 15625, 38160, 40000, 14989, 361, 9409, 84817, 356409, 493695, 303601, 70927, 784, 29319, 440896, 3453471, 8231161, 5879679, 2353156, 338352, 1681, 91204, 2280000
OFFSET
1,1
COMMENTS
Table starts
....9.......33........100...........315.............961...............3024
...16......136........625..........2976...........15625..............84817
...36......660.......5041.........38160..........356409............3453471
...81.....3213......40000........493695.........8231161..........143424652
..169....14989.....303601.......5879679.......175642009.........5493044921
..361....70927....2353156......71884125......3855664836.......216545491864
..784...338352...18318400.....893571840.....85629975876......8624298007460
.1681..1603633..141681409...10965349591...1881009507001....340129511751843
.3600..7596720.1096603225..134407778400..41320353904281..13416072442152345
.7744.36066272.8501393209.1654812479232.910635938795025.530629269304561623
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +3*a(n-3) +a(n-4) -a(n-5) -a(n-6)
k=2: [order 21]
k=3: [order 45]
Empirical for row n:
n=1: a(n) = 3*a(n-1) +a(n-3) +7*a(n-4) -20*a(n-5) -2*a(n-6) -4*a(n-8) +8*a(n-9)
n=2: [order 36]
EXAMPLE
Some solutions for n=3 k=4
..0..1..0..1..1....1..1..1..0..1....0..0..0..0..1....0..1..1..1..0
..1..0..0..0..0....0..0..0..1..0....0..0..1..0..0....0..0..1..0..0
..1..0..0..0..1....0..0..0..0..0....0..0..0..1..1....1..0..0..0..0
..1..0..0..0..0....0..0..0..0..0....1..1..0..0..1....1..0..0..1..1
CROSSREFS
Column 1 is A207170 for n>1
Sequence in context: A061913 A379908 A264512 * A208136 A130444 A177697
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 13 2013
STATUS
approved