Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Nov 13 2013 08:57:02
%S 33,136,660,3213,14989,70927,338352,1603633,7596720,36066272,
%T 171140301,811651995,3850637109,18269376384,86668158745,411153474416,
%U 1950577525332,9253691650061,43899995716425,208265361505983,988028267125504
%N Number of (n+1)X(2+1) 0..1 arrays with no element having a strict majority of its horizontal, diagonal and antidiagonal neighbors equal to one
%C Column 2 of A231764
%H R. H. Hardin, <a href="/A231758/b231758.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +47*a(n-3) -25*a(n-4) +21*a(n-5) -403*a(n-6) +110*a(n-7) +40*a(n-8) +1601*a(n-9) -348*a(n-10) -520*a(n-11) -2656*a(n-12) +792*a(n-13) +288*a(n-14) +2480*a(n-15) -544*a(n-16) +128*a(n-17) -1600*a(n-18) +128*a(n-19) +512*a(n-21)
%e Some solutions for n=6
%e ..0..0..0....1..0..0....1..0..0....0..0..0....0..0..1....1..0..0....0..0..0
%e ..1..0..1....1..1..0....0..1..1....1..0..0....0..0..0....1..0..0....1..0..1
%e ..0..1..1....0..0..1....0..0..0....1..0..1....1..1..1....1..1..0....1..0..0
%e ..0..0..0....0..0..1....1..0..0....0..0..0....0..0..1....1..0..0....0..0..0
%e ..0..0..0....1..0..0....1..0..0....1..0..0....0..0..0....1..0..0....0..1..0
%e ..1..1..0....0..1..1....0..0..0....0..1..1....1..0..1....0..1..1....0..0..0
%e ..0..0..1....0..0..0....1..1..0....0..0..1....0..1..0....1..0..0....1..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 13 2013