login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that reversal (n^2) plus 1 is prime.
2

%I #16 Dec 04 2018 20:50:40

%S 1,2,5,8,9,10,15,16,17,20,26,29,46,50,51,52,79,80,81,83,90,92,94,100,

%T 142,144,149,150,159,160,161,162,167,168,170,171,172,173,200,246,247,

%U 251,254,255,258,259,260,262,264,283,284,287,289,290,297,299,449,454

%N Numbers n such that reversal (n^2) plus 1 is prime.

%C If n is a multiple of 10, after reversal leading zeros are discarded before adding 1.

%H K. D. Bajpai, <a href="/A231756/b231756.txt">Table of n, a(n) for n = 1..5500</a>

%e a(3)= 5: 5^2= 25: reversing the digits gives 52: 52+1= 53 which is prime.

%e a(7)= 15: 15^2= 225: reversing the digits gives 522: 522+1= 523 which is prime.

%p with(StringTools):KD:= proc() local a; a:= parse(Reverse(convert((n^2), string)))+1;if isprime(a) then RETURN (n): fi;end: seq(KD(), n=1..1000);

%t Select[Range[500], PrimeQ[ToExpression[StringReverse[ToString[#^2]]] + 1] &]

%t Select[Range[500],PrimeQ[IntegerReverse[#^2]+1]&] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Dec 04 2018 *)

%Y Cf. A005574 (numbers n: n^2 + 1 is prime).

%Y Cf. A059007 (numbers n: n^2 reversed is a prime).

%K nonn,base

%O 1,2

%A _K. D. Bajpai_, Nov 21 2013