OFFSET
0,3
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), pp. 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; ResearchGate link; preprint, 2016.
J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
FORMULA
G.f.: g(x) satisfies g(x) = (1+x+x^2+x^3)^2*g(x^4) + (x+2*x^2+3*x^3)/(1-x-x^4+x^5). - Robert Israel, Sep 20 2017
a(n) ~ 3*n*log(n)/(4*log(2)). - Amiram Eldar, Dec 09 2021
MAPLE
ListTools:-PartialSums([seq(convert(convert(n, base, 4), `+`), n=0..200)]); # Robert Israel, Sep 20 2017
MATHEMATICA
Table[Sum[Total[IntegerDigits[j, 4]], {j, 0, n}], {n, 0, 100}] (* G. C. Greubel, Feb 16 2019 *)
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 4)); \\ Michel Marcus, Sep 20 2017
(Magma) [(&+[&+Intseq(j, 4): j in [0..n]]): n in [0..100]]; // G. C. Greubel, Feb 16 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved