login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231664
a(n) = Sum_{i=0..n} digsum_4(i), where digsum_4(i) = A053737(i).
6
0, 1, 3, 6, 7, 9, 12, 16, 18, 21, 25, 30, 33, 37, 42, 48, 49, 51, 54, 58, 60, 63, 67, 72, 75, 79, 84, 90, 94, 99, 105, 112, 114, 117, 121, 126, 129, 133, 138, 144, 148, 153, 159, 166, 171, 177, 184, 192, 195, 199, 204, 210, 214, 219, 225, 232, 237, 243, 250, 258, 264, 271, 279, 288, 289, 291, 294, 298, 300, 303, 307, 312, 315, 319, 324, 330, 334, 339, 345, 352, 354, 357
OFFSET
0,3
REFERENCES
Jean-Paul Allouche and Jeffrey Shallit, Automatic sequences, Cambridge University Press, 2003, p. 94.
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), pp. 263-271, Kluwer Acad. Publ., Dordrecht, 1993.
Hsien-Kuei Hwang, Svante Janson and Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms, Vol. 13, No. 4 (2017), Article #47; ResearchGate link; preprint, 2016.
J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
FORMULA
G.f.: g(x) satisfies g(x) = (1+x+x^2+x^3)^2*g(x^4) + (x+2*x^2+3*x^3)/(1-x-x^4+x^5). - Robert Israel, Sep 20 2017
a(n) ~ 3*n*log(n)/(4*log(2)). - Amiram Eldar, Dec 09 2021
MAPLE
ListTools:-PartialSums([seq(convert(convert(n, base, 4), `+`), n=0..200)]); # Robert Israel, Sep 20 2017
MATHEMATICA
Table[Sum[Total[IntegerDigits[j, 4]], {j, 0, n}], {n, 0, 100}] (* G. C. Greubel, Feb 16 2019 *)
PROG
(PARI) a(n) = sum(i=0, n, sumdigits(i, 4)); \\ Michel Marcus, Sep 20 2017
(Magma) [(&+[&+Intseq(j, 4): j in [0..n]]): n in [0..100]]; // G. C. Greubel, Feb 16 2019
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 13 2013
STATUS
approved