

A231628


Smallest sets of 6 consecutive deficient numbers in arithmetic progression. The initial deficient number is listed.


3



2987, 4727, 9723, 18843, 22983, 30543, 35147, 39947, 45047, 50463, 55787, 56807, 58055, 58779, 69183, 78047, 81947, 85743, 101147, 106143, 108255, 109247, 117123, 134087, 139743, 139803, 152567, 171287, 174347, 175907, 182643, 189767, 197027, 199803, 202127
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Shyam Sunder Gupta, Table of n, a(n) for n = 1..5000


EXAMPLE

2987, 2989, 2991, 2993, 2995, 2997 is the smallest set of 6 consecutive deficient numbers in arithmetic progression so 2987 is in the list.


MATHEMATICA

DefQ[n_] := DivisorSigma[1, n] < 2 n; m = 2; z1 = 2; cd = 1; a = {}; Do[If[DefQ[n], If[n  z1 == cd, m = m + 1; If[m > 5, AppendTo[a, n  5*cd]], m = 2; cd = n  z1]; z1 = n], {n, 3, 1000000}]; a


CROSSREFS

Cf. A005100, A231623, A228963, A231624, A231625, A231626.
Sequence in context: A120373 A186866 A252571 * A231623 A108926 A159731
Adjacent sequences: A231625 A231626 A231627 * A231629 A231630 A231631


KEYWORD

nonn


AUTHOR

Shyam Sunder Gupta, Nov 11 2013


STATUS

approved



