login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes with decimal digits in arithmetic progression mod 10.
3

%I #11 Aug 05 2022 15:50:16

%S 2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,

%T 97,109,173,197,307,383,593,727,739,937,2963,4567,4703,5791,7159,8147,

%U 9371,10987,15937,19753,37159,52963,53197,58147,71593,72727,73951,76543

%N Primes with decimal digits in arithmetic progression mod 10.

%C This sequence contains straight-line primes (A167847).

%C a(216) has 1012 digits. - _Michael S. Branicky_, Aug 05 2022

%H Michael S. Branicky, <a href="/A231588/b231588.txt">Table of n, a(n) for n = 1..215</a> (terms 1..147 from Paul Tek)

%H Paul Tek, <a href="/A231588/a231588.txt">PARI program for this sequence</a>

%e (7,2,7,2,7,...) is an arithmetic progression mod 10, hence the prime number 72727 appears in this sequence.

%e (7,6,5,4,3,...) is an arithmetic progression mod 10, hence the prime number 76543 appears in this sequence.

%t Select[Prime[Range[PrimePi[76543]]], Length[Union[Mod[Differences[IntegerDigits[#]], 10]]] <= 1 &]

%o (PARI) See Link section.

%o (Python)

%o from sympy import isprime

%o from itertools import count, islice

%o def bgen():

%o yield from [2, 3, 5, 7]

%o yield from (int("".join(str((s0+i*r)%10) for i in range(d))) for d in count(2) for s0 in range(1, 10) for r in range(-s0, 10-s0))

%o def agen(): yield from filter(isprime, bgen())

%o print(list(islice(agen(), 52))) # _Michael S. Branicky_, Aug 05 2022

%Y Cf. A167847.

%K base,nonn

%O 1,1

%A _Paul Tek_, Nov 11 2013