Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Dec 06 2017 03:42:47
%S 4,28,124,602,2776,12922,60720,286047,1335296,6256326,29377828,
%T 137595239,644951590,3024402309,14175895645,66459189937,311583082104,
%U 1460702584712,6848241858778,32106603868468,150524267596760,705711781367756
%N Number of nX2 0..3 arrays with no element less than a strict majority of its horizontal, vertical, diagonal and antidiagonal neighbors
%C Column 2 of A231586
%H Robert Israel, <a href="/A231581/b231581.txt">Table of n, a(n) for n = 1..1488</a> (first 210 terms from R. H. Hardin)
%H Robert Israel, <a href="/A231581/a231581.pdf">Maple-assisted proof of formula</a>
%F Empirical: a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16).
%F Empirical formula verified by _Robert Israel_, Dec 06 2017 (see link).
%e Some solutions for n=7
%e ..0..0....3..0....2..1....0..3....2..0....2..3....2..2....1..1....3..3....0..0
%e ..0..2....0..0....1..1....0..0....0..0....2..2....0..0....2..1....0..0....0..1
%e ..1..0....0..0....0..0....0..1....1..0....3..2....0..0....1..2....0..0....0..0
%e ..0..0....0..2....0..0....0..2....0..0....1..1....1..3....0..0....0..3....3..0
%e ..2..0....0..1....0..2....0..0....0..1....1..1....0..0....0..0....0..0....0..1
%e ..2..0....0..0....2..0....0..0....0..0....1..1....0..0....0..0....3..0....0..0
%e ..0..0....0..0....0..0....2..0....3..0....2..1....2..3....0..2....0..0....0..3
%p rec:= a(n) = 4*a(n-1) +6*a(n-2) +38*a(n-3) -161*a(n-4) -292*a(n-5) -953*a(n-6) +1185*a(n-7) +4928*a(n-8) +12336*a(n-9) +7076*a(n-10) -7076*a(n-11) -24464*a(n-12) -24608*a(n-13) -18624*a(n-14) -6720*a(n-15) -2304*a(n-16):
%p Data := [4, 28, 124, 602, 2776, 12922, 60720, 286047, 1335296, 6256326, 29377828, 137595239, 644951590, 3024402309, 14175895645, 66459189937]:
%p f:= gfun:-rectoproc({rec,seq(a(i)=Data[i],i=1..16)},a(n),remember):
%p map(f, [$1..40]); # _Robert Israel_, Dec 06 2017
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 11 2013