Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Oct 27 2019 11:11:23
%S 4,6,8,10,12,15,16,20,24,28,30,40,48,52,60,66,70,80,85,91,112,120,130,
%T 176,190,208,232,240,276,280,286,364,370,435,451,496,520,532,561,616,
%U 703,742,910,946,976,1036,1105,1128,1288,1387,1456,1729,1770,1891
%N Composite numbers n such that lambda(n) divides 4n-4, where lambda is the Carmichael lambda function (A002322).
%C Contains the Carmichael numbers (A002997) and A231569.
%C Conjecture: the relative asymptotic density of the Carmichael numbers in this sequence exists, is positive and smaller than 1.
%H Amiram Eldar, <a href="/A231571/b231571.txt">Table of n, a(n) for n = 1..10000</a>
%H J. M. Grau and Antonio Oller-Marcén, <a href="https://arxiv.org/abs/1103.3483">Generalizing Giuga's conjecture</a>, arXiv:1103.3483 [math.NT], 2011.
%t Select [1 + Range[100000], ! PrimeQ[#] && IntegerQ[4 (# -1)/ CarmichaelLambda[#]] &]
%o (PARI) is(n)=!isprime(n) && (4*n-4)%lcm(znstar(n)[2])==0 && n>1 \\ _Charles R Greathouse IV_, Nov 13 2013
%Y Cf. A002322, A231569, A231570, A231572, A231573.
%K nonn
%O 1,1
%A _José María Grau Ribas_, Nov 11 2013