login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n X 2 0..1 arrays with no element less than a strict majority of its horizontal, vertical and antidiagonal neighbors.
1

%I #11 Sep 30 2018 02:44:49

%S 2,6,20,57,164,485,1424,4169,12228,35868,105177,308433,904520,2652574,

%T 7778858,22812126,66898367,196184665,575326896,1687191264,4947820577,

%U 14509871545,42551335553,124785126404,365942162811,1073154072467

%N Number of n X 2 0..1 arrays with no element less than a strict majority of its horizontal, vertical and antidiagonal neighbors.

%H R. H. Hardin, <a href="/A231538/b231538.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) - 4*a(n-2) + 5*a(n-3) - 8*a(n-4) + 3*a(n-5) - 2*a(n-6) + a(n-7) - a(n-8).

%F Empirical g.f.: x*(2 - 2*x + 4*x^2 - 9*x^3 + 2*x^4 - x^5 + x^6 - x^7) / (1 - 4*x + 4*x^2 - 5*x^3 + 8*x^4 - 3*x^5 + 2*x^6 - x^7 + x^8). - _Colin Barker_, Sep 29 2018

%e Some solutions for n=7:

%e 0 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 0 0 1 0

%e 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0

%e 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 1

%e 1 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 1 1 1 0

%e 0 1 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 1 0 0

%e 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

%e 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0

%Y Column 2 of A231544.

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 10 2013