login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231502
a(n) = Sum_{i=0..n} wt(i)^4, where wt() = A000120().
4
0, 1, 2, 18, 19, 35, 51, 132, 133, 149, 165, 246, 262, 343, 424, 680, 681, 697, 713, 794, 810, 891, 972, 1228, 1244, 1325, 1406, 1662, 1743, 1999, 2255, 2880, 2881, 2897, 2913, 2994, 3010, 3091, 3172, 3428, 3444, 3525, 3606, 3862, 3943, 4199, 4455, 5080, 5096, 5177, 5258, 5514, 5595, 5851, 6107, 6732, 6813, 7069
OFFSET
0,3
LINKS
Jean Coquet, Power sums of digital sums, J. Number Theory, Vol. 22, No. 2 (1986), pp. 161-176.
P. J. Grabner, P. Kirschenhofer, H. Prodinger and R. F. Tichy, On the moments of the sum-of-digits function, PDF, Applications of Fibonacci numbers, Vol. 5 (St. Andrews, 1992), Kluwer Acad. Publ., Dordrecht, 1993, pp. 263-271; alternative link.
J.-L. Mauclaire and Leo Murata, On q-additive functions. I, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 6 (1983), pp. 274-276.
J.-L. Mauclaire and Leo Murata, On q-additive functions. II, Proc. Japan Acad. Ser. A Math. Sci., Vol. 59, No. 9 (1983), pp. 441-444.
Kennth B. Stolarsky, Power and exponential sums of digital sums related to binomial coefficient parity, SIAM J. Appl. Math., Vol. 32, No. 4 (1977), pp. 717-730.
J. R. Trollope, An explicit expression for binary digital sums, Math. Mag., Vol. 41, No. 1 (1968), pp. 21-25.
FORMULA
a(n) ~ n * (log(n)/(2*log(2)))^4 + O(n*log(n)^3) (Stolarsky, 1977). - Amiram Eldar, Jan 20 2022
a(n) = Sum_{k=0..floor(log_2(n+1))} k^4 * A360189(n,k). - Alois P. Heinz, Mar 06 2023
MATHEMATICA
Accumulate @ (Table[DigitCount[n, 2, 1], {n, 0, 60}]^4) (* Amiram Eldar, Jan 20 2022 *)
PROG
(PARI) a(n) = sum(i=0, n, hammingweight(i)^4); \\ Michel Marcus, Nov 12 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Nov 12 2013
STATUS
approved