login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231430
Number of ternary sequences which contain 000.
5
0, 0, 0, 1, 5, 21, 81, 295, 1037, 3555, 11961, 39667, 130049, 422403, 1361385, 4359115, 13880129, 43984227, 138795849, 436367131, 1367434577, 4272615603, 13315096089, 41397076939, 128429930465, 397665266595, 1229127726825, 3792875384251, 11686625364785
OFFSET
0,5
COMMENTS
Recurrence formula given below, a(n) = 3*a(n-1) + 2* (3^(n-4) - a(n-4)) based on following recursive construction: To a string of length (n-1) containing 000 add any of {0,1,2}. To a string of length (n-4) NOT containing 000, add 1000 or 2000. These two operations result in the two terms of the formula.
FORMULA
a(n) = 3*a(n-1) + 2* (3^(n-4) - a(n-4)).
G.f.: x^3/(1 - 5*x + 4*x^2 + 4*x^3 +6*x^4). - Geoffrey Critzer, Jan 14 2014
EXAMPLE
For n = 3, the only string is 000.
For n = 4, the 5 strings are: 0000,0001,0002,1000,2000.
For n = 5, there are: 1 with 5 0's, 12 with 4 0's, and 8 with just 3; total 21.
MATHEMATICA
t = {0, 0, 0, 1}; Do[AppendTo[t, 3 t[[-1]] + 2*(3^(n - 4) - t[[-4]])], {n, 4, 30}]; t (* T. D. Noe, Nov 11 2013 *)
(* or *)
nn=28; r=Solve[{s==2x s+2x a+2x b+1, a==x s, b==x a, c==3x c+x b}, {s, a, b, c}]; CoefficientList[Series[c/.r, {x, 0, nn}], x] (* Geoffrey Critzer, Jan 14 2014 *)
CoefficientList[Series[x^3/(1-5x+4x^2+4x^3+6x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{5, -4, -4, -6}, {0, 0, 0, 1}, 40] (* Harvey P. Dale, Jul 27 2021 *)
CROSSREFS
Cf. A119826 (without 000), A119827 (exactly one 000).
Cf. A186244 (with 00).
Sequence in context: A029870 A269915 A273393 * A269916 A273205 A269917
KEYWORD
nonn
AUTHOR
Toby Gottfried, Nov 09 2013
STATUS
approved