login
Number of (2+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order
1

%I #4 Nov 08 2013 17:22:10

%S 4,8,38,90,363,1163,3985,14650,50088,185178,665415,2425915,8953631,

%T 32773916,121530364,449147910,1665804417,6189859849,22993326811,

%U 85585457988,318520365520,1186296435208,4419902305187,16469639460901

%N Number of (2+1)X(n+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, diagonal and antidiagonal neighbors, with values 0..2 introduced in row major order

%C Row 2 of A231396

%H R. H. Hardin, <a href="/A231398/b231398.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) +12*a(n-2) -43*a(n-3) -103*a(n-4) +278*a(n-5) +418*a(n-6) -1103*a(n-7) -883*a(n-8) +2549*a(n-9) +1514*a(n-10) -4171*a(n-11) -1969*a(n-12) +4818*a(n-13) +1876*a(n-14) -3992*a(n-15) -1124*a(n-16) +2288*a(n-17) +288*a(n-18) -752*a(n-19) +96*a(n-21)

%e Some solutions for n=6

%e ..0..0..1..0..0..1..1....0..1..1..1..1..1..2....0..1..0..0..0..0..1

%e ..0..1..0..1..1..0..0....0..0..1..1..1..2..2....1..0..1..1..0..1..0

%e ..1..0..1..1..0..0..0....0..0..1..1..1..2..2....0..1..1..1..1..0..1

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 08 2013