login
Number of (n+1)X(2+1) 0..3 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..3 introduced in row major order
1

%I #4 Nov 08 2013 08:24:52

%S 2,5,16,51,180,685,2735,11243,47120,199945,855484,3679681,15882263,

%T 68701955,297607842,1290360591,5597964012,24294536389,105460450143,

%U 457862871585,1988029384006,8632497563339,37485816423762,162782662033991

%N Number of (n+1)X(2+1) 0..3 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..3 introduced in row major order

%C Column 2 of A231363

%H R. H. Hardin, <a href="/A231357/b231357.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 6*a(n-1) +2*a(n-2) -55*a(n-3) +50*a(n-4) +98*a(n-5) -140*a(n-6) +6*a(n-7) +73*a(n-8) -20*a(n-9) -71*a(n-10) +19*a(n-11) +24*a(n-12) +9*a(n-13) for n>14

%e Some solutions for n=7

%e ..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0

%e ..0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....0..1..1....0..0..1

%e ..0..1..1....0..1..1....0..1..1....0..0..0....1..1..1....1..1..1....0..1..1

%e ..1..1..2....1..1..1....1..1..1....0..0..0....1..1..1....1..1..1....1..1..2

%e ..2..2..2....2..2..2....1..1..2....0..1..1....0..0..0....2..2..2....2..2..2

%e ..2..2..2....2..2..2....1..2..2....1..1..1....0..0..0....2..2..1....2..2..3

%e ..3..3..2....2..2..1....2..2..1....2..2..1....2..2..0....1..1..1....3..3..3

%e ..3..3..2....2..1..1....2..1..1....2..2..1....2..2..0....1..1..1....3..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 08 2013