login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros but T(n,1) = -1 and the first element of column k is in row k(k+1)/2.
13

%I #54 Nov 04 2024 02:30:12

%S -1,-1,-1,1,-1,0,-1,3,-1,0,1,-1,5,0,-1,0,0,-1,7,3,-1,0,0,1,-1,9,0,0,

%T -1,0,5,0,-1,11,0,0,-1,0,0,3,-1,13,7,0,1,-1,0,0,0,0,-1,15,0,0,0,-1,0,

%U 9,5,0,-1,17,0,0,0,-1,0,0,0,3,-1,19,11,0,0,1

%N Triangle read by rows: T(n,k), n>=1, k>=1, in which column k lists the odd numbers interleaved with k-1 zeros but T(n,1) = -1 and the first element of column k is in row k(k+1)/2.

%C Gives an identity for the abundance of n. Alternating sum of row n equals the abundance of n, i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*T(n,k) = A033880(n).

%C Row n has length A003056(n) hence the first element of column k is in row A000217(k).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Abundance.html">Abundance</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/QuasiperfectNumber.html">Quasiperfect Number</a>

%F T(n,1) = -1; T(n,k) = A196020(n,k), for k >= 2.

%e Triangle begins:

%e -1;

%e -1;

%e -1, 1;

%e -1, 0;

%e -1, 3;

%e -1, 0, 1;

%e -1, 5, 0;

%e -1, 0, 0;

%e -1, 7, 3;

%e -1, 0, 0, 1;

%e -1, 9, 0, 0;

%e -1, 0, 5, 0;

%e -1, 11, 0, 0;

%e -1, 0, 0, 3;

%e -1, 13, 7, 0, 1;

%e -1, 0, 0, 0, 0;

%e -1, 15, 0, 0, 0;

%e -1, 0, 9, 5, 0;

%e -1, 17, 0, 0, 0;

%e -1, 0, 0, 0, 3;

%e -1, 19, 11, 0, 0, 1;

%e -1, 0, 0, 7, 0, 0;

%e -1, 21, 0, 0, 0, 0;

%e -1, 0, 13, 0, 0, 0;

%e ...

%e For n = 15 the divisors of 15 are 1, 3, 5, 15 hence the abundance of 15 is 1 + 3 + 5 + 15 - 2*15 = 1 + 3 + 5 - 15 = -6. On the other hand the 15th row of triangle is -1, 13, 7, 0, 1, hence the alternating row sum is -1 - 13 + 7 - 0 + 1 = -6, equalling the abundance of 15.

%e If n is even then the alternating sum of the n-th row of triangle is simpler than the sum of divisors of n minus 2*n. Example: the sum of divisors of 24 minus 2*24 is 1 + 2 + 3 + 4 + 6 + 8 + 12 + 24 - 2*24 = 60 - 48 = 12, and the alternating sum of the 24th row of triangle is -1 - 0 + 13 - 0 + 0 - 0 = 12.

%Y Column 2 is A193356.

%Y Cf. A000203, A000217, A000396, A003056, A005100, A005843, A033879, A033880, A069283, A196020, A212119, A228813, A231347, A235791, A235794, A236104, A236106, A236112, A237593.

%K sign,tabf,nice

%O 1,8

%A _Omar E. Pol_, Dec 26 2013