OFFSET
0,3
COMMENTS
See A231303.
LINKS
Stanislav Sykora, Table of n, a(n) for n = 0..9999
Stanislav Sýkora, Magnetic Resonance on OEIS, Stan's NMR Blog (Dec 31, 2014), Retrieved Nov 12, 2019.
Index entries for linear recurrences with constant coefficients, signature (6,-14,14,0,-14,14,-6,1).
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-2k)^5.
a(0)=0, a(1)=1, a(2)=32, a(3)=244, a(4)=1056, a(5)=3369, a(6)=8832, a(7)=20176, a(n) = 6*a(n-1) - 14*a(n-2) + 14*a(n-3) - 14*a(n-5) + 14*a(n-6) - 6*a(n-7) + a(n-8). - Harvey P. Dale, Jul 22 2014
From Colin Barker, Dec 22 2015: (Start)
a(n) = (1/24)*(2*n^6 + 12*n^5 + 20*n^4 - 16*n^2 - 3*(-1)^n + 3).
G.f.: x*(1 + 26*x + 66*x^2 + 26*x^3 + x^4) / ((1-x)^7*(1+x)).
(End)
EXAMPLE
a(4) = 4^5 + 2^5 = 1056; a(5) = 5^5 + 3^5 + 1^5 = 3369.
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+n^5}, a, {n, 30}] (* or *) LinearRecurrence[{6, -14, 14, 0, -14, 14, -6, 1}, {0, 1, 32, 244, 1056, 3369, 8832, 20176}, 40] (* Harvey P. Dale, Jul 22 2014 *)
PROG
(PARI) nmax=100; a = vector(nmax); a[2]=1; for(i=3, #a, a[i]=a[i-2]+(i-1)^5); print(a);
(PARI) concat(0, Vec(x*(1+26*x+66*x^2+26*x^3+x^4)/((1-x)^7*(1+x)) + O(x^50))) \\ Colin Barker, Dec 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Stanislav Sykora, Nov 07 2013
STATUS
approved