login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231296
Number of (n+1) X (2+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order.
1
2, 5, 16, 51, 174, 617, 2223, 8051, 29220, 106109, 385468, 1400401, 5088037, 18486201, 67166528, 244037407, 886670130, 3221565113, 11705027203, 42528259303, 154519400012, 561420537017, 2039828499536, 7411378111905
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) + 2*a(n-2) - 16*a(n-3) + 16*a(n-4) - 6*a(n-5) - 3*a(n-6) + 4*a(n-8) for n>9.
Empirical g.f.: x*(2 - 3*x - 8*x^2 + 9*x^3 - 14*x^4 + 7*x^5 + 3*x^6 + 4*x^7 + 4*x^8) / ((1 - x)*(1 - x + x^2)*(1 - 2*x - 8*x^2 + 5*x^3 + 8*x^4 + 4*x^5)). - Colin Barker, Sep 28 2018
EXAMPLE
Some solutions for n=4:
..0..1..1....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0....0..1..1
..0..1..1....0..0..1....0..0..1....0..0..1....0..1..1....1..1..0....0..1..1
..0..0..0....1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....0..0..0
..0..0..1....1..2..2....1..1..2....1..1..1....1..0..0....1..1..0....0..0..2
..0..1..1....2..2..2....1..2..2....1..1..1....0..0..0....1..1..0....0..2..2
CROSSREFS
Column 2 of A231302.
Sequence in context: A148387 A121651 A054660 * A148388 A148389 A108529
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 07 2013
STATUS
approved