%I #14 Sep 28 2018 09:53:29
%S 1,2,4,12,32,92,264,756,2176,6252,17976,51684,148592,427228,1228328,
%T 3531604,10153824,29193548,83935256,241324740,693839952,1994879932,
%U 5735538696,16490418228,47412092736,136315920428,391925964280
%N Number of (n+1) X (1+1) 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with values 0..2 introduced in row major order.
%H R. H. Hardin, <a href="/A231295/b231295.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n1) + 3*a(n2)  4*a(n4).
%F Empirical g.f.: x*(1 + x)^2*(1  2*x) / ((1  x)*(1  x  4*x^2  4*x^3)).  _Colin Barker_, Sep 28 2018
%e Some solutions for n=4:
%e ..0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0....0..0
%e ..0..0....0..0....0..1....0..1....0..1....0..0....0..0....0..0....0..0....0..0
%e ..0..1....1..1....1..1....1..1....1..1....0..0....1..1....1..1....0..0....0..0
%e ..1..1....1..1....0..0....2..2....1..1....0..1....1..2....1..0....1..1....0..0
%e ..1..1....1..1....0..0....2..2....1..1....1..1....2..2....0..0....1..1....0..0
%Y Column 1 of A231302.
%K nonn
%O 1,2
%A _R. H. Hardin_, Nov 07 2013
