login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A231291
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x) / (1 - x - k*x^2).
2
1, 1, 3, 9, 29, 99, 355, 1333, 5213, 21163, 88899, 385413, 1720637, 7894827, 37166563, 179254501, 884548253, 4460597131, 22962705027, 120557527941, 644952640253, 3512995320939, 19468234666531, 109694091843109, 628027149163613, 3651429293510731, 21547912967252163
OFFSET
0,3
COMMENTS
Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (1 + k*x)/(1 + x + k*x^2) = 1/(1-x).
LINKS
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 9*x^3 + 29*x^4 + 99*x^5 + 355*x^6 + 1333*x^7 +...
where
A(x) = 1 + x*(1+x)/(1-x-x^2) + x^2*(1+x)*(1+2*x)/((1-x-x^2)*(1-x-2*x^2)) + x^3*(1+x)*(1+2*x)*(1+3*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)) + x^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1-x-x^2)*(1-x-2*x^2)*(1-x-3*x^2)*(1-x-4*x^2)) +...
PROG
(PARI) {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+k*x)/(1-x-k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A099780 A006134 A074526 * A239116 A239117 A239118
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2013
STATUS
approved